关于八年级数学教案范文4篇(八年级数学优秀教案)

时间:2023-09-25 10:00:00 教案

  下面是范文网小编分享的关于八年级数学教案范文4篇(八年级数学优秀教案),以供借鉴。

关于八年级数学教案范文4篇(八年级数学优秀教案)

关于八年级数学教案范文1

  一、教学目标:

  1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.

  2、会求一组数据的极差.

  二、重点、难点和难点的突破方法

  1、重点:会求一组数据的极差.

  2、难点:本节课内容较容易接受,不存在难点.

  三、课堂引入:

  下表显示的是上海20xx年2月下旬和20xx年同期的每日最高气温,如何对这两段时间的气温进行比较呢?

  从表中你能得到哪些信息?

  比较两段时间气温的高低,求平均气温是一种常用的方法.

  经计算可以看出,对于2月下旬的这段时间而言,20xx年和20xx年上海地区的平均气温相等,都是12度.

  这是不是说,两个时段的气温情况没有什么差异呢?

  根据两段时间的气温情况可绘成的折线图.

  观察一下,它们有区别吗?说说你观察得到的结果.

  用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).

  四、例习题分析

  本节课在教材中没有相应的例题,教材P152习题分析

  问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。

关于八年级数学教案范文2

  教学任务分析

  教学目标

  知识技能

  探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.

  数学思考

  能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.

  解决问题

  通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.

  情感态度

  在应用等腰梯形的性质的过程养成独立思考的习惯, 在数学学习活动中获得成功的体验.

  重点

  等腰梯形的性质及其应用.

  难点

  解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线),及梯形有关知识的应用.

  教学流程安排

  活动流程图

  活动的内容和目的

  活动1想一想

  活动2说一说

  活动3画一画

  活动4做—做

  活动5练一练

  活动6理一理

  观察梯形图片,引入本节课的学习内容.

  了解梯形定义、各部分名称及分类.

  通过画图活动,初步发现梯形与三角形的转化关系.

  探究得到等腰梯形的性质.

  通过解决具体问题,寻找解决梯形问题的方法.

  通过整理回顾,巩固知识、提高能力、渗透思想.

  教学过程设计

  问题与情景

  师生行为

  设计意图

  [活动1]

  观察下图中,有你熟悉的图形吗?它们有什么共同的特点?

  演示图片,学生欣赏.

  结合图片,教师引导学生注意这些图片的共同特征:一组对边平行而另一组对边不平行.

  由现实中实际问题入手,设置问题情境,引出本课主题.通过学生观察图片和归纳图形的特点,培养学生的观察、概括能力.

  [活动2]

  梯形定义 一组对边平行而另一组对边不平行的四边形叫做梯形.

  学生根据梯形概念画出图形,教师可以进一步引导学生类比梯形与平行四边形的区别和联系.

  通过类比,培养学生归纳、总结的能力.

  问题与情景

  师生行为

  设计意图

  一些基本概念

  (1)(如图):底、腰、高.

  (2)等腰梯形:两腰相等的梯形叫做等腰梯形.

  (3)直角梯形:有一个角是直角的梯形叫做直角梯形.

  学生在小学已经对梯形有一定的感性认识,因此教师让学生自己介绍(1)中的基本概念,在聆听学生发言后, 教师可以强调:①梯形与四边形的关系;

  ②上、下底的概念是由底的长短来定义的,而并不是指位置来说的.

  熟悉图形,明确概念,为探究图形性质做准备.

  [活动3]

  画一画

  在下列所给图中的每个三角形中画一条线段,

  (1)怎样画才能得到一个梯形?

  (2)在哪些三角形中,能够得到一个等腰梯形?

  在学生独立探究的基础上,学生分组交流.

  教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其正确作图.

  本次活动教师应重点关注:

  (1)学生在活动过程中能否发现梯形与三角形之间的联系,他们之间的转化方法.

  (2)学生能否将等腰三角形转化为等腰梯形.

  (3)学生能否主动参与探究活动,在讨论中发表自己的见解,倾听他人的意见,对不同的观点进行质疑,从中获益.

  等腰梯形的性质与等腰三角形相仿,因此在活动3中设计了第(2)题,在推导等腰梯形性质或需要添加辅助线时,可以借助等腰三角形来研究.尤其是根据等腰三角形是轴对称图形,可得到等腰梯形是轴对称图形这条性质,为活动4种开展探究奠定了基础.

  问题与情景

  师生行为

  设计意图

  [活动4]

  做—做

  探索等腰梯形的性质(引入用轴对称解决问题的思想).

  在一张方格纸上作一个等腰梯形,连接两条对角线.

  (1)这个图形是轴对称图形吗?对称轴在哪里?你能发现哪些相等的线段和相等的角?学生画图并通过观察猜想;

  (2)这个等腰梯形的两条对角线的长度有什么关系?

  学生按照实验步骤,独立完成画图过程,观察图形,思考教师提出的问题,猜想、验证、归纳结论.

  针对不同认识水平的学生,教师指导学生活动.

  师生共同归纳:

  ①等腰梯形是轴对称图形,上下底的中点连线是对称轴.

  ②等腰梯形两腰相等.

  ③等腰梯形同一底上的两个角相等.

  ④等腰梯形的两条对角线相等.

  教学中要注意引导学生证明等腰梯形的性质,尤其在证明“等腰梯形同一底上的两个角相等”这条性质时,“平移腰”和“作高”这两种常见的辅助线,在教学中头一次出现,可以借此机会,给学生介绍这两种辅助线的添加方法.

  [活动5]

  练—练

  例1 (教材P118的例1)略.

  例2 如图,梯形ABCD中,AD∥BC,

  ∠B=70°,∠C=40°,AD=6cm,BC=15cm.

  求CD的长.

  师生共同分析,寻找解决问题的方法和策略.

  例1是等腰梯形性质的直接运用,请学生分析、解答,教师聆听,同时注意指导学生,在证明△EAD是等腰三角形时,要用到梯形的定义“上下底互相平行(AD∥BC)”这一点.

  分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题.

  其方法是:平移一腰,过点A作AE∥DC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

  解:(略)

  通过题目的练习与讲解应让学生知道:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在教学时应让学生注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.

  问题与情景

  师生行为

  设计意图

  例3已知:如图,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

  BE⊥AC于E.

  求证:BE=CD.

  分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF∥AB交BC于F,因此四边形ABFD是平行四边形,则DF=AB,由已知可导出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

  证明(略)

  例2与例3这里给出的辅助线均是“平移一腰”,老师们在教学或练习中可以根据学生的实际情况,再引导、补充其他辅助线的添加方法,让学生多了解、多见识.

  [活动6]

  1.小结

  2.布置作业

  (1)已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长和面积.

  (2)已知:如图,

  梯形ABCD中,CD//AB,,.

  求证:AD=AB—DC.

  (3)已知,如图,

  梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC.(延长DE交CB延长线于点F,由全等可得结论)

  师生归纳总结:

  解决梯形问题常用的方法:

  (1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);

  (2)“作高”:使两腰在两个直角三角形中(图2);

  (3)“延腰”:构造具有公共角的两个等腰三角形(图3);

  (4)“平移对角线”:使两条对角线在同一个三角形中(图4);

  (5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).

  尽量多地让学生参与发言是一个交流的过程.

  梳理本节课应用过的辅助线添加方法,既可以锻炼学生思维,又可以留给学生继续探究的空间.

  学生通过独立思考,完成课后作业,便于发现问题,及时查漏补缺.

关于八年级数学教案范文3

  教学建议

  1、平行线等分线段定理

  定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等。

  注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成。

  定理的作用:可以用来证明同一直线上的线段相等;可以等分线段。

  2、平行线等分线段定理的推论

  推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。

  推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

  记忆方法:“中点”+“平行”得“中点”。

  推论的用途:(1)平分已知线段;(2)证明线段的倍分。

  重难点分析

  本节的重点是平行线等分线段定理。因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础。

  本节的难点也是平行线等分线段定理。由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意。

  教法建议

  平行线等分线段定理的引入

  生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:

  ①从生活实例引入,如刻度尺、作业本、栅栏、等等;

  ②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论。

  教学设计示例

  一、教学目标

  1、使学生掌握平行线等分线段定理及推论。

  2、能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力。

  3、通过定理的变式图形,进一步提高学生分析问题和解决问题的能力。

  4、通过本节学习,体会图形语言和符号语言的和谐美

  二、教法设计

  学生观察发现、讨论研究,教师引导分析

  三、重点、难点

  1、教学重点:平行线等分线段定理

  2、教学难点:平行线等分线段定理

  四、课时安排

  l课时

  五、教具学具

  计算机、投影仪、胶片、常用画图工具

  六、师生互动活动设计

  教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

  七、教学步骤

  【复习提问】

  1、什么叫平行线?平行线有什么性质。

  2、什么叫平行四边形?平行四边形有什么性质?

  【引入新课】

  由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线 ,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线 ,测量它被相邻横线截得的线段是否也相等?

  (引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)

  平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等。

  注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确。

  下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证)。

  已知:如图,直线 , 。

  求证: 。

  分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得 ),通过全等三角形性质,即可得到要证的'结论。

  (引导学生找出另一种证法)

  分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得 。

  证明:过 点作 分别交 、 于点 、 ,得 和 ,如图。

  ∴

  ∵ ,

  ∴

  又∵ , ,

  ∴

  ∴

  为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示)。

  引导学生观察下图,在梯形 中, , ,则可得到 ,由此得出推论 1。

  推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。

  再引导学生观察下图,在 中, , ,则可得到 ,由此得出推论2。

  推论2:经过三角形一边的中点与另一边平行的直线必平分第三边。

  注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好。

  接下来讲如何利用平行线等分线段定理来任意等分一条线段。

  例 已知:如图,线段 。

  求作:线段 的五等分点。

  作法:①作射线 。

  ②在射线 上以任意长顺次截取 。

  ③连结 。

  ④过点 。 、 、 分别作 的平行线 、 、 、 ,分别交 于点 、 、 、 。

  、 、 、 就是所求的五等分点。

  (说明略,由学生口述即可)

  【总结、扩展】

  小结:

  (l)平行线等分线段定理及推论。

  (2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明。

  (3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组。

  (4)应用定理任意等分一条线段。

  八、布置作业

  教材P188中A组2、9

  九、板书设计

  十、随堂练习

  教材P182中1、2

关于八年级数学教案范文4

  教学目标:

  1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。

  2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。

  教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。

  教学方法:动手实践、讨论。

  教学工具:课件

  教学过程:

  一、 先复习轴对称图形的定义,以及轴对称的相关的性质:

  1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________

  2.轴对称的三个重要性质______________________________________________

  _____________________________________________________________________

  二、提出问题:

  二、探索练习:

  1. 提出问题:

  如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。

  你能画出这个图案的另一半吗?

  吸引学生让学生有一种解决难点的想法。

  2.分析问题:

  分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可

  问题转化成:已知对称轴和一个点A,要画出点A关于L的对应点 ,可采用如下方法:`

  在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。

  三、对所学内容进行巩固练习:

  1. 如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。

  2. 试画出与线段AB关于直线L的线段

  3.如图,已知 直线MN,画出以MN为对称轴 的轴对称图形

  小 结: 本节课学习了已知对称轴L和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。

  教学后记:学生对这节课的内容掌握比较好,但对于利用轴对称的性质来设计图形觉得难度比较大。因本节课内容较有趣,许多学生上课积极性较高

关于八年级数学教案范文4篇(八年级数学优秀教案)相关文章:

八年级数学教案范文4篇 初中数学八年级教案设计

实用的八年级数学教案3篇 八年级数学教案模板

有关八年级数学教案范文7篇 初中8年级数学教案

有关八年级数学教案3篇 初中8年级数学教案

有关八年级数学教案3篇

关于八年级数学教案3篇 初中数学八年级教案设计

有关八年级数学教案范文5篇 八年级数学教学方案

八年级数学教案模板5篇 初中数学八年级教案设计

关于八年级数学教案范文7篇 八年级数学教案模板

有关八年级数学教案模板4篇(八年级数学习题课教案)