最小公倍数教学设计 篇1
教学目标:
1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。
2.培养学生的观察能力、分析能力和归纳概括能力。
3.培养学生良好的学习习惯。
教学重点:使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。
教学难点:使学生学会并理解求两个特殊数的最小公倍数的方法。
教学实录:
一、引入:
师:同学们,现在是什么季节?
生:春天。
师:对,春天来了,草绿了,花开了,蜜蜂们开始忙碌起来了,其实在蜜蜂的王国里也有许多有趣的数学问题。大家看,(课件出示)蜜蜂们每天白天都忙碌的采花粉酿花蜜,但是,由于这个蜜蜂王国的日益壮大,蜜蜂们越来越多,每次大家同时采完蜜回来往往非常拥挤,这可怎么办呢?于是蜂王就想了一个办法。
[点评:教师努力营造让学生爱学、乐学的课堂教学环境,密切联系有趣的生活实例,通过课件演示,创设教学环境,使学生在愉快的氛围中学习数学,同时使本课的数学知识赋予一定的价值]
二、新授
1.(1)师:蜂王把它们分成了2组,1组每30分钟回来一次,1组每40分钟回来一次。它想这样可就解决问题了。同学们,你们说蜂王是否解决了这个问题?
生①:解决了。
生②:没有解决,过一段时间,它们会一起回来的。
师:有的同学认为这个办法可以,有的认为不行。请你们自己证明一下,在证明时,你可以利用手中的学具,也可以用你喜欢的其他方法。
(2)学生讨论
(3)学生汇报
师:哪个小组来展示你们的研究成果?
生①:用纸条证明,(学生在展台演示)每隔30分钟回来一次的,第四次回来要120分钟,每隔40分钟回来一次的,第三次回来也要120分钟,当120分钟时它们会同时回来,发生碰撞,所以不行。
师:这种方法形象直观,非常好,还有不同和方法吗?
生②:用数轴证明。(学生在展台演示)
师:大家认为这种方法怎么样?
生:简洁清楚。
师:有的小组用的是摆纸条的方法,有的小组用的是数轴表示的方法,都十分形象,还有不同的方法吗?
生③:找倍数的方法证明。30的倍数有:30 60 90 120;40的倍数有:40 80 120 ,我发现它们有共同的倍数120,所以第120分钟它们会相撞。
板书:30的倍数:30 60 90 120
40的倍数:40 80 120
(4)师小结:刚才同学们采用了不同方法,但都是先找出30和40的倍数,从而发现它们有公有的倍数120,看来是真的不行。
[点评:培养学生的创新精神,首先要张扬学生的个性。教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法。]
2.师:咱们换一个数试试。一组60分钟回来一次,一组90分钟回来一次。请同学们再来证明一下。
学生验证
学生汇报。
生:60的倍数有:60 120 180;90的倍数有:90 180。所以在180分钟时它们会相遇。
师:恩,还是不行,我们发现60和90也有公倍数。
3.师:那是不是任意两个数都有公倍数呢?请同学们在小组里交流一下。
生:任意两个数都有公倍数,例如17和18的公倍数就是它们两个数的乘积。
师:通过刚才同学们的汇报我们可以看出:任意两个数都有公有的倍数,也就是公倍数。什么是公倍数?
生:两个数公有的倍数就是他们的公倍数。
师:公倍数有多少个?
生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。
师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?
生①:举例:2、4和5的公倍数是20。
生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。
师:那你能找出最大的或最小的公倍数吗?
生:没有最大的,只有最小的。
师:为什么?
生:因为公倍数的个数是无限的,所以没有最大公倍数。
[点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。]
4.[出示]找最小公倍数
4和8 5和10 6和15 6和9 4和5
让学生找出每组数的公倍数。
师:4和8你们怎么找得这么快?能给大家说一说你的方法吗?
生:大数要是小数的倍数,大数就是它们的公倍数。
师:你们还能发现了什么?
小组讨论,之后汇报。
生①:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。
生②:5和10的最小公倍数是10,并不是它们的乘积。
生③:4和5两个数是互质数。互质数的最小公倍数师它们的乘积。
[点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。]
三、总结
师:通过刚才的学习与练习,我们学会了用列举法求两个数的最小公倍数并且发现了一些特殊数求最小公倍数的方法。
【设计思路】
“最大公倍数”是一节概念课,学起来比较枯燥。本课是在学生学习了最大公因数以后进行教学的,最大公因数和最小公倍数虽然属于不同的概念,但它们的学习方法相似。本课设计强调了学习方法的借鉴,让学生借鉴学习最大公因数的方法研究最小公倍数的意义,一开课,我就通过情景导入,既激发了学生的学习兴趣,又使学生在解决蜜蜂回巢的问题中初步理解公倍数和最小公倍数的概念,学会求最小公倍数的基本方法。在找公倍数的过程中,呈现出找法的多样性,引导学生分析出各种方法的优劣,促进了学生思维的个性化发展;然后变换情景中的问题作为进一步学习的材料,引导学生通过多个实例发现其中的规律,加深对公倍数和最小公倍数的概念的理解;最后,通过寻找最小公倍数的练习探索求特殊关系两个数最小公倍数的方法,加深了学生的理解与应用。同时,使学生初步感知从特殊到一般的规律,培养同学之间的协作精神。
【评析】本节课虽是概念教学,但学生思维活跃,情绪高昂,学得生动有趣 。
1. 结合学生实际创设问题情景。“最小公倍数”这一课,与学生的生活实际看似无多大联系,在本堂课的教学中,教师通过对教材内容作适当补充调整,为学生提供了生动有趣的信息,从而构建了一种解决问题的数学课堂。先以故事的形式提出问题,为学生提供了一个“公倍数”的实物模型,让学生借助具体实例,初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。在此基础上,引导学生走进数学,抽象出公倍数、最小公倍数等数学概念。这样的设计,不仅激发了学生学习的强烈兴趣,而且让学生感受到数学与生活是紧密联系的,体会到学习数学源于生活又高与生活的特点。
2. 让学生经历知识的形成过程。本节课,教师充分体现了这一新课程理念。如,在获取公倍数、最小公倍数的特征这个环节中, 教师为学生创设了一定的情景,然后放手让学生合作解决,教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法,在此基础上抽象出公倍数、最小公倍数的概念。在初步获得所学知识后,教师又巧妙地引发学生更深层次地思考,使学生产生了深刻的体验,从中进一步感悟并理解公倍数和最小公倍数的概念。同时通过自主探究发现互质的两个数的最小公倍数是这两个数的乘积;倍数关系的两个数的最小公倍数是其中较大数。
最小公倍数教学设计 篇2
【教学内容】:
人教版五年级下册教科书第88—90页内容。
【设计理念】:
数学于生活,有作用于生活。在本堂课的教学,我把数学与生活紧密的联系在一起,从而构建一种生活化的数学课堂。让学生根据现实生活中一些能够反映公倍数、最小公倍数的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验,进而激发学生兴趣,去解决这些实际问题,真切地体会到数学与外部生活世界的联系,体会到数学的特点和价值,体会到“数学化”的真正含义,从而帮助他们获得对数学的正确认识。真正达到“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展”。
【教学目标】:
1、知识与技能:通过创设具体情境(三个情景片断)和操作活动,使学生认识并理解公倍数和最小公倍数的概念,初步了解两个数的公倍数和最小公倍数在现实生活中的应用,会找两个数的公倍数和它们的最小公倍数。
2、过程与方法:通过自主探索解决问题的方法,使学生经历探索找两个数的公倍数和最小公倍数的过程,鼓励学生思考多样化,简洁化,进行有条理的思考。
3、情感态度价值观:在自主探索与合作交流的过程中,进一步发展与同伴的合作交流能力,获得成功的体验。使学生感受到数学于生活,体会公倍数和最小公倍数在生活中的实际价值。
【教学重点】:
1、理解公倍数与最小公倍数的概念
2、能找出两个数的公倍数与最小公倍数,会解决实际生活中的一些问题
【教学难点】:
能找出两个数的公倍数与最小公倍数,会解决实际生活中的一些问题
【教具、学具准备】:
多媒体、日历。
最小公倍数教学设计 篇3
教材分析
该内容是在学生已经学习了“约数和倍数的意义”、“质数和合数、分解质因数”、“最大公约数”等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习“通分”所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。
学情分析
五年级学生的生活经验和知识背景更为丰富,动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。
教学目标
(体现多维目标;体现学生思维能力培养)
(1)让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。
(2)让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。
(3)渗透集合思想,培养学生的抽象概括能力
重点、难点
重点:公倍数与最小公倍数的概念建立。
难点:运用“公倍数与最小公倍数”解决生活实际问题
教法、学法
为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。
教 学 流 程
媒体运用
任务导学
明确
任务
师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。
师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的.倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:)
师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。
课堂探究
自主
学习
1、出示例1
师:同学们,仔细读要求,你们认为解决这个问题要注意什么?
生独立思考,领会题意和要求。
出示
合作
探究
2、合作交流,动手操作
我们每一对同桌都准备了一张方格纸和一些长3厘米、宽2厘米的长方形,下面就用这些长方形来代替瓷砖在方格纸上来摆一摆、画一画或直接算一算。
3、汇报交流
师板书:2的倍数:2、4、6、8、10、12、14……
3的倍数:3、6、9、12、15、18……
2和3的公倍数:6、12、24……
交流
展示
4、明确意义
师提出问题:为什么不能铺成边长是4厘米或9厘米的正方形?除了能铺成边长是6厘米的正方形之外,还可以铺成边长是多少厘米的正方形?最小是多少厘米?你发现能铺成的正方形的边长有什么特点?
(设计意图:这几个问题连环递进,通过第一问使学生理解4只是2的倍数,9只是3的倍数,不论是边长4厘米还是9厘米均不符合题意,从而使学生深刻理解"公"字的含义;通过第二、三问使学生发现能铺成的正方形的边长必须是2和3的公倍数,而只要符合这个条件的正方形是有无数个的,从而渗透了数形结合与极限思想。)
师:通过刚才的报数和铺正方形的过程,现在谁能用自己的话说说什么是公倍数和最小公倍数?在韦恩图上怎么表示?
5、找最小公倍数
师:是不是只有2和3才有公倍数呢?其你也举个例子里找一找他们的公倍数,有一个要求:看谁能在规定的时间里找到的公倍数最多,用的方法最巧。
汇报交流:
师:请找到最多的同学说一说,你有什么好方法介绍给大家。
4、发现特殊关系的两个数的最小公倍数的特点
师让学生举例,然后将学生所举的例子分成了3类。启发学生:我是根据什么标准来分的?你所举的例子属于哪一类?咱们再来看一看,他们的最小公倍数有什么特点?(让举例的学生汇报最小公倍数)
得出规律:两个数是互质关系的,它们的最小公倍数就是他们的乘积;
两个数是倍数关系的,它们的最小公倍数就是较大的那个数。
如果以后让你找两个数的最小公倍数,你会怎么做?
反馈拓展
拓展
提升
13和2()1000和25()
18和6()8和9()
1和12()9和15()
2、师:运用公倍数的知识,可以解决许多生活中的实际问题。一天周老师和一位乐清的同学在温州参加完同学会之后,第二天要赶回来上班,从温州新南站我们了解到以下一些信息:
师:为了能同时出发,你认为周老师该选择哪些时间出发?
3、求三个数的公倍数
总结:
这节课我们学习了什么?你有什么收获?
评价
检测
最小公倍数教学设计 篇4
教学目标:
1、结合具体情境,体会公倍数和最小公倍数的应用,理解公倍数和最小公倍数的意义。
2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3、培养学生推理、归纳、总结和概括能力。
教学重点:
学会用列举法找出两个数的最小公倍数。
教学难点:
理解公倍数、最小公倍数的意义。
教学过程:
一、以趣激疑
比比谁的声音亮?请两组学生报数,并请报到2、3倍数的同学分别起立。问:你发现了什么?为什么有些人起立了两次?让学生初步感受有些数既是2的倍数又是3的倍数。(教师引导学生用“既是…又是…”来表达想法。)
师:6、12、18、24……既是2的倍数又是3的倍数,我们就可以说6、12、18、24……是2和3的公倍数。(师板书“公倍数”)
师:同学们,今天我们就一起来研究有关“公倍数”的问题。
二、创设情境,感知概念
1、两个数的公倍数和最小公倍数的概念教学
师:同学们,你们喜欢阿凡提吗?为什么喜欢他?(他聪明、机智、幽默、……)今天老师也给你们讲个阿凡提的故事:从前有个长工,在巴依老爷家干了一年也没有拿到一个铜板。长工们于是自发地组织了起来并邀请阿凡提帮他们去向巴依老爷讨工资。巴依老爷含着烟斗冷笑着说:“工资我可以给你,不过我的钱都在我的账房先生那里。从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。到了某天,他真的从巴依老爷家帮长工拿到了工钱。
请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?你准备如何解决这个问题?
让学生独立思考,整理解决问题的思路,并在四人小组里交流、讨论。全班汇报,交流想法。(同学们达成共识:要先分别找出巴依老爷、账房先生的休息日、再找出他们两人的共同休息日。)
同桌两人合作,通过在日历上圈一圈、本子上写一写等方式,寻求解决的办法。师巡视,并重点引导学生辨析休息日的日期应是4和6的公倍数,而不是3和5的公倍数。
全班交流,汇报。
师板书:巴依老爷的休息日:4、8、12、16、20、24、28
账房先生的休息日:6、12、18、24、30
他们八月份的共同休息日:12、24
这些数据说明了什么?如果阿凡提8日这天去巴依老爷家行吗?那18日这天去巴依老爷家行吗?引导学生明确阿凡提要把事情办好,只有在巴依老爷和账房先生都在家休息的日子去才行。所以阿凡提可以在12日和24日这两天去找巴依老爷和账房先生。
你们猜猜阿凡提会哪一天去巴依老爷家呢?
师板书:最早的共同休息日:12
师:你们真聪明,用自己的智慧解决了问题。现在我们一起用数学的眼光,来看看巴依老爷和账房先生的休息日的数据有什么特点?根据学生的发言,教师把板书“巴依老爷的休息日、账房先生的休息日、他们八月份的共同休息日”相应地改写成“4的倍数、6的倍数、4和6的倍数”。
师:“4和6的倍数”还可以怎么说?(4和6的公倍数)“公”是什么意思?(你有我也有、共有)数据“12”是什么?(4和6的最小公倍数)
你还有其他的表示方式吗?(集合圈的图示方式)
谁能说说什么是公倍数?什么是最小公倍数?教师板书课题。
2、加深学生对公倍数和最小公倍数现实意义的理解。
现在我们再来帮助小朋友解决问题。教师出示图,一些小朋友在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。”请大家猜猜这些学生可能有几人?
细细体会班长说的话,你知道了什么?学生独立思考,解决。全班交流想法,要求总人数就是求6和8的公倍数。
引导学生介绍用“大数翻倍法”等,简化步骤,不断改进方法。注意学生用省略号表示不同的可能性。
师:如果这些学生的总人数在50以内,那么他们最多有几人?我们所求出的“48人”是6和8的最大公倍数吗?为什么?为什么不用学习求最大公倍数呢?(因为每一个数的倍数的个数都是无限的,两个数的公倍数的个数也是无限的。因此,两个数没有最大的公倍数。)
3、归纳求最小公倍数的方法。
师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)
4、看书88——89页,你还有什么问题?
师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?
教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。
三、解决问题,深化理解
1、互质数和倍数关系的数的最小公倍数
师出示书第90页的“做一做”,让学生独立解决,填写在书上。
观察一下这里的每一组中的两个数有什么关系?
它们的最小公倍数与这两个数有什么关系?
(提示:3和5这两个数有什么关系?3和5的公倍数有哪些?最小公倍数是几?15与3、5这两个数有什么关系?)
提问:根据刚才的分析,你有没有发现什么规律?
(当两数成倍数关系时,较大的数就是它们的最小公倍数。当两数只有公因数1时,这两个数的积就是它们的最小公倍数。)
2、打电话游戏。
师:许老师家的电话号码是一个七位数,从高位到低位依次是:
(1)2和8的最小公倍数
(2)最小的质数
(3)既是6的倍数又是6的因数
(4)5和15的.最大公因数
(5)既是偶数又是质数
(6)比所有自然数的公因数多7的数
(7)2和3的最小公倍数。你能说说老师家的电话吗?
师:你是怎样知道的?
师:你们分析得多好啊!真了不起!
四、课堂小结
今天你学到了什么?收获最大的是什么?你有什么学习经验介绍给大家?
五、作业
运用这单元学习的知识,也给你的朋友编一个谜语,让他们猜猜你们家的电话号码。
教学反思:
一、尊重学生的数学现实,巧妙设计
新课程强调:数学学习应该是一个思维活动,而不是程序操练的过程。学生总是带着自己的数学现实参与数学课堂,不断地利用原有的经验背景对新的问题做出解释,进行加工,从而实现对数学知识、数学思想方法的意义建构。所以,作为教师在预设数学活动时,要充分尊重学生的数学现实,不拘于教材,不照本宣科,巧妙设计,拓宽探索的空间,提高课堂教学的有效性。
本节课在教学设计中,我能够根据教学的需要,大胆地改变教材的呈现形式,调整了教材的资源,激发了学生产生学习和探究的欲望。
上课一开始,通过设计“报数”的活动,让学生体验到有些同学之所以站了两次,是因为他们的号数既是2的倍数又是3的倍数,从而在自然而然的活动参与中,使学生体会到:“两个不同的数存在着公倍数”。
接着,通过阿凡提的机智故事,引导学生在解决巴依老爷和账房先生的共同休息日的问题中,从数学的角度去观察和发现他们各自的休息日数据上的特点,从而得出巴依老爷的休息日就是4的倍数,账房先生的休息日就是6的倍数,他们两人的共同休息日就是4和6的公倍数……这样的教学设计,不像教师讲解学生接受那样直接明快,确实“费时”,但是并不“低效”。学生在这一教学过程中,从各自的已有经验出发,体验了“最小公倍数”概念的发生、形成的过程,经历了生动活泼的、主动的、富有个性的数学建构活动,获取了对数学概念的理解,而且还在思维能力、情感态度与价值观等多方面得到了进步和发展。
二、提升学生的数学现实,画龙点睛
数学学习是新知识与学生已有“数学现实”互相作用融为一体的过程,数学学习的任务就是要不断丰富和提高学生所拥有的数学现实。所以作为一名教师,课堂上不能仅仅满足于学生已有的数学现实的再现,而应设计出“点睛之笔”,用恰如其分的问题引导学生深入思考,使学生的认识科学化、深刻化,从而真正地提高课堂教学的有效性。
本节课在教学中虽然充分地展现了学生在解决“求两个数的最小公倍数”问题的不同方法和思维策略,但作为教师应该引导学生在共同的数学交流中,通过经验分享、方法交换、思维沟通等实现融合,并在比较中求同存异,实现由个性化认识向共性化知识的有效转变。面对学生众多不同的解题方法如:列举法、集合图表示法、小数翻倍法等,教师可以引导学生通过对比、讨论,对各种解题方法的优劣性重新进行认识,并在交流的过程中实现方法的有效优化。可通过展开比赛,分大组分别写出50以内4和6的倍数等活动,让学生自行发现,在相同的取值范围内,较大数的倍数比较少,较小数的倍数比较多。从而引导学生对小数翻倍法进行修正,改为大数翻倍法。大数翻倍法简便易学,便于心算,是一种比较好的求最小公倍数的方法,应通过教学活动让每个学生都切实地理解和掌握。
此外,本节课的例2在设计上存在着与例1重复、低效的弊端,应把例2的数字改为“4和8”,从而提升学生的思维层次,引导学生再次从观察数据的特点入手,找到求最小公倍数的更直接有效的方法。通过这样的修正,整节课的容量将更加丰富、更有层次性、更有思考和探究的空间。
最小公倍数教学设计 篇5
教学目标:
1.学生结合具体情境,体会并理解公倍数和最小公倍数的含义,会在集合图中表示两个数的倍数和公倍数。
2.通过自主探索,使学生经历找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3.在探索交流的学习过程中,使学生获得成功的体验,激发学生的学习兴趣。
教学重点:
理解公倍数和最小公倍数的含义。
教学难点:
用不同的方法求两个数的公倍数和最小公倍数。
教学过程:
一、游戏导入
同学们都知道自己的学号吧,我叫到学号的同学请起立,看看谁的反应快。(课件出示:学号是4的倍数的同学请起立;是6的倍数的同学请起立)哪些同学站起来2次?请站起来两次的同学再次起立,依次报出你们的学号。
师:想一想,他们为什么站起来两次?
生:因为他们既是4的倍数也是6的倍数。
师:你能给它起个名字吗?(板书公倍数)这节课我们就来研究关于公倍数的问题。
设计意图:说明通过报数游戏,让学生在研究现实问题的情境中学习数学,激发学生的学习积极性。
二、自主探索
(一)公倍数和最小公倍数的概念
1.回忆学习方法
师:请同学们回忆,我们是怎样研究公因数的?
生:先分别写出两个数的因数;从这些因数中找出相同的因数就是公因数;其中最大的一个因数就是这两个数的最大公因数。
师:我们就用这样的方法来研究游戏中4和6的公倍数问题。
2.自主探究
学生在练习本上独立找出4和6的公倍数。
3.汇报交流
学生交流自己的学习成果,同学间互相讨论。(两个数有没有最大的公倍数?为什么?)
4. 小结概念,课件演示集合图。
12,24,36,……是4和6公有的倍数,叫做它们的公倍数。其中,12是最小的公倍数,叫做它们的最小公倍数。
设计意图:因为学生前面已经学习了公因数,这里让学生通过迁移的方法,很快地认识到这方面的知识,从而使学生获得成功的体验。
(二)求两个数的公倍数和最小公倍数的方法。
师:请用你想到的方法找出6和8的公倍数和最小公倍数。
(1)学生独立完成,全班交流。
(2)学生交流方法有:
①列举法:先找倍数,再找公倍数,最后找出最小公倍数。
例如:6的倍数:6,12,18,24,30,36,42,48,……
8的倍数:8,16,24,32,40,48,……
6和8公倍数:24,48,……6和8的最小公倍数:24
②用集合图表示也很清楚。
③6的倍数中有哪些是8的倍数呢?或者8的倍数中有哪些是6的倍数呢?
师:这么多方法,你喜欢哪一种?
通过观察,想一想:①两个数的公倍数和它们的最小公倍数之间有什么关系?
练习:18和24 15和25
三、课堂练习:
找出下面每组数的最小公倍数,看看有什么发现?
3和6 2和8 5和6 4和9 3和9 5和10
交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。
你能举个例子吗?
四、独立作业:
数学书71页2题
五、课堂小结:
师:今天学习了什么知识?你有什么收获?
生:几个数公有的倍数叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。
找两个数公倍数和最小公倍数的方法等等。
最小公倍数教学设计 篇6
教学目标:
1、结合具体情境,理解公倍数和最小公倍数的意义,体会公倍数和最小公倍数的运用。
2、探究找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3、能积极探究生活中的数学问题,体会数学问题的探索性和挑战性。
教学重点:
探究找公倍数的方法。
教学难点:
会利用列举法等方法找出两个数的公倍数和最小公倍数。
教学过程:
一:复习导入,初步感受
师:同学们,我们已经认识了倍数,谁能举例说几个3的倍数?
生:3的倍数有3、6、9、12、15,…
师:2的倍数呢?
生:2的倍数有2、4、6、8、10,…
师:3和2的最小倍数各是几?
生:都是它们本身。
师:那么,为什么在说倍数时要加省略号呢?
生:一个数的倍数个数是无限的,所以要加省略号。
(师出示教材第51页数表,在这张数表中有50个数。请同学们用△标出4的倍数,用○标出6的倍数。)
(生操作圈数)
师:谁能说说4的倍数?
生:4的倍数有4、8、12、16、…,48。
师:6的倍数呢?
生:6的倍数有6、12、18、24、30、…,48。
师:在圈数时,你们发现什么?
生:我们发现有些数既是4的倍数,又是6的倍数。
师:能举例说明吗?
生:如12、24、36、48。这些数既用△标出,又用○标出,所以它们既是4的倍数,又是6的倍数。
二、顺理成章,概念
师:那么,能否给这些数起一个名字吗?
生1:我起的名字叫共同的倍数。
生2:这个名字太长了,叫公倍数更好.
师:这个名字起的好,在数学上把这些数都叫做公倍数,那么谁来一下什么叫做公倍数?
生3:公倍数就是这几个数共同有的倍数.
师:那么,在这几个数的公倍数中,谁给"12"也起个名字?
生4:它是最小一个,所以它的名字叫最小公倍数.
师:有没有最大公倍数呢?
(师生共同讨论)
三.方法,实际应用
师:请同学们回顾一下,刚才我们是用什么方法引出公倍数的?
(学生的发言,板书:枚举法)
师:在寻找最小公倍数时,经常用到枚举的方法。下面请用这个方法作第51页的填一填。
(学生练习,在他们汇报时,教师应指导集合圈的写法。)
师:谁来汇报的结果?
(学生展示各自的练习)
师:在做这一题时,还有其他的想法吗?
生1:我认为用书上的方法寻找最小公倍数太麻烦,所以我不用这个方法也能求出6和9的最小公倍数。我在想6的倍数,想到8这个数时,就发现它也是9的倍数,那它一定是6和9最小公倍数,这样就不用写到50了。
生2:我同意他的看法,不过应该从9的倍数找起会更快。因为9的倍数比6的倍数大,会找的更快。
生3:我发现3和5的最小公倍数是15,就是3×5得到的,所以求最小公倍数就用两个数相乘就行了。
生4:我不同意,6和9相乘得54,而6和9的最小公倍数时18。
生5:我发现54要是除以6和9的最大公因数3就是18了。
师:那么,同学们对这几位同学的发现有什么看法?不妨通过几组数来考证一下这几位同学的想法,从而一下求最小公倍数的几种方法。
(出示教材第52页第3题,学生独立求最小公倍数,然后在小组里讨论有什么发现。师生共同求3种类型的数的最小公倍数的方法。)
(出示教材第52页的第4题,讨论解决具体的实际问题。)
四、收获
师:今天的学习你有什么收获?
师:同学们不仅很好地理解了公倍数和最小公倍数的含义,又掌握了求公倍数和最小公倍数的的方法。
最小公倍数教学设计 篇7
教学目标:
1、结合具体情境,理解公倍数和最小公倍数的意义,体会公倍数和最小公倍数的运用。
2、探究找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3、能积极探究生活中的数学问题,体会数学问题的探索性和挑战性。
教学重点:
探究找公倍数的方法。
教学难点:
会利用列举法等方法找出两个数的公倍数和最小公倍数。
教学过程:
一:复习导入,初步感受
师:同学们,我们已经认识了倍数,谁能举例说几个3的倍数?
生:3的倍数有3、6、9、12、15,…
师:2的倍数呢?
生:2的倍数有2、4、6、8、10,…
师:3和2的最小倍数各是几?
生:都是它们本身。
师:那么,为什么在说倍数时要加省略号呢?
生:一个数的倍数个数是无限的,所以要加省略号。
(师出示教材第51页数表,在这张数表中有50个数。请同学们用△标出4的倍数,用○标出6的倍数。)
(生操作圈数)
师:谁能说说4的倍数?
生:4的倍数有4、8、12、16、…,48。
师:6的倍数呢?
生:6的倍数有6、12、18、24、30、…,48。
师:在圈数时,你们发现什么?
生:我们发现有些数既是4的倍数,又是6的倍数。
师:能举例说明吗?
生:如12、24、36、48。这些数既用△标出,又用○标出,所以它们既是4的倍数,又是6的倍数。
二、顺理成章,概念
师:那么,能否给这些数起一个名字吗?
生1:我起的名字叫共同的倍数。
生2:这个名字太长了,叫公倍数更好.
师:这个名字起的好,在数学上把这些数都叫做公倍数,那么谁来一下什么叫做公倍数?
生3:公倍数就是这几个数共同有的倍数.
师:那么,在这几个数的公倍数中,谁给"12"也起个名字?
生4:它是最小一个,所以它的名字叫最小公倍数.
师:有没有最大公倍数呢?
(师生共同讨论)
三.方法,实际应用
师:请同学们回顾一下,刚才我们是用什么方法引出公倍数的?
(学生的发言,板书:枚举法)
师:在寻找最小公倍数时,经常用到枚举的方法。下面请用这个方法作第51页的填一填。
(学生练习,在他们汇报时,教师应指导集合圈的写法。)
师:谁来汇报的结果?
(学生展示各自的练习)
师:在做这一题时,还有其他的想法吗?
生1:我认为用书上的方法寻找最小公倍数太麻烦,所以我不用这个方法也能求出6和9的最小公倍数。我在想6的倍数,想到8这个数时,就发现它也是9的倍数,那它一定是6和9最小公倍数,这样就不用写到50了。
生2:我同意他的看法,不过应该从9的倍数找起会更快。因为9的倍数比6的倍数大,会找的更快。
生3:我发现3和5的最小公倍数是15,就是3×5得到的,所以求最小公倍数就用两个数相乘就行了。
生4:我不同意,6和9相乘得54,而6和9的最小公倍数时18。
生5:我发现54要是除以6和9的最大公因数3就是18了。
师:那么,同学们对这几位同学的发现有什么看法?不妨通过几组数来考证一下这几位同学的想法,从而一下求最小公倍数的几种方法。
(出示教材第52页第3题,学生独立求最小公倍数,然后在小组里讨论有什么发现。师生共同求3种类型的数的最小公倍数的方法。)
(出示教材第52页的第4题,讨论解决具体的实际问题。)
四、收获
师:今天的学习你有什么收获?
师:同学们不仅很好地理解了公倍数和最小公倍数的含义,又掌握了求公倍数和最小公倍数的的方法。
最小公倍数教学设计【合集7篇】相关文章:
★ 小学五年级数学最小公倍数教学设计2篇(五年级下册数学最小公倍数应用题)